A HUN-REN Wigner Fizikai Kutatóközpont szakemberei felfedezték az anyag egy új állapotát, melyben folyadékcseppek elektromos mező hatására aktívan mozgó, egymással kölcsönható részecskékként viselkednek – olvasható a HUN-REN közleményében. Eredményeik új utat nyitnak a precíziós technológia világában.
Salamon Péter és Máthé Marcell Tibor a ferroelektromos nematikus folyadékkristályokat vizsgálták. A kutatók megfigyelték, hogy a ferroelektromos nematikus folyadékcseppek felülete elektromos mezőben instabillá válik, és fraktálszerű folyadéknyúlványok alakulnak ki.
Ezen anyagokat olyan hosszúkás aszimmetrikus molekulák alkotják, melyek erősen polárosak, azaz a két végük ellentétes előjelű, pozitív és negatív elektromos töltésekkel jellemezhető.
A ferroelektromos nematikus fázis különlegessége és ritkasága abban rejlik, hogy az alkotó molekulák úgy rendeződnek, hogy a molekulák elektromos töltésmegosztása nem átlagolódik ki, hanem összeadódik, így az anyagnak spontán elektromos polarizációja lesz.
Bár az analógia nem tökéletes, a ferroelektromos nematikus folyadékok a mágneses folyadékok (ferrofluidok) elektromos verzióiként képzelhetők el. Létezésüket már több mint száz éve megjósolták, mégis csak 2017-ben sikerült először ilyen anyagot szintetizálni.
A kutatás során azt tapasztalták, hogy amikor nagyobb feszültséget kapcsoltak a folyadékcseppekre, azok még extrémebben viselkedtek: elvesztették csepp formájukat, és bonyolult, labirintusra emlékeztető struktúrát alkottak. A kutatók azt is kimutatták, hogy váltófeszültséget alkalmazva, egy bizonyos frekvenciatartományban a cseppek különböző alakokat felvéve elkezdenek mozogni. A mozgás során a cseppek egymást taszítva részecskékként ütköznek, és olyan aktív objektumokra hasonlítanak, mint a rajzó rovarok, mikrobák vagy mikrorobotok. A kutatók a cseppek mozgását szabályozni is tudták feszültséggel, így a jelenség alkalmazható lehet új típusú mikrofluidikai eszközökben. Ezen felfedezésnek gyakorlati haszna lehet az orvosi diagnosztikában, a kémiai analízisben és a biotechnológiában is.
Azt is megfigyelték, hogy ezt a mozgást hangkibocsátás kíséri. A meglepő jelenség magyarázatát a hang spektrumának analízise segítette, ami arra utalt, hogy cseppek a váltófeszültség hatására mechanikai rezgésbe jönnek, aminek jellemző frekvenciái a meghajtójel frekvenciája, illetve annak kétszerese. A kutatók ezen eredményeiket a rangos Nature Communications folyóiratban publikálták.
Szintén a ferroelektromos nematikus folyadékkristályokat vizsgálták a Kent State University (USA) kutatóival megvalósult együttműködés során Jákli Antal professzorral. Az együttműködés keretében a világon elsőként mutatták ki az inverz piezoelektromosság jelenséget háromdimenziós folyadékokban.
Az effektus lényege, hogy a ferroelektromos nematikus folyadékra feszültséget kapcsolva, a feszültséggel egyenes arányban az anyag mechanikai elmozdulást mutat. A jelenség fordítva is működik: ekkor mechanikai deformáció hatására elektromos töltések keletkeznek a felületén.
A kHz-es frekvenciatartományban a vizsgált anyag piezoelektromos csatolási állandója meghaladja az 1 nC/N értéket, ami azt jelenti, hogy egy newtonnyi erő hatására legalább 1 nanocoulomb töltés keletkezik. Ez az érték hasonló a legerősebb piezoelektromos szilárd anyagokéhoz, tehát a vizsgált anyag piezoelektromos tulajdonságai kiemelkedőek, annak ellenére, hogy nem is szilárd halmazállapotú.
A ferroelektromos nematikus folyadékkristályok elektromechanikai válaszának megértése lehetővé teszi a mechanikai energia kinyerését, és új utat nyit a folyadékaktuátorok, mikropozicionálók és elektromosan hangolható optikai lencsék kifejlesztéséhez. A kutatók eredményeiket a rangos Advanced Functional Materials folyóiratban publikálták.
The post Magyar kutatók fedeztek fel új anyagállapotot first appeared on National Geographic.

